Ion-assisted ground-state cooling of a trapped polar molecule
نویسندگان
چکیده
منابع مشابه
Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation.
We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n[over ¯]=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(...
متن کاملLaser cooling of trapped atoms to the ground state: A dark state in position space
We propose a scheme that allows us to laser cool trapped atoms to the ground state of a one-dimensional confining potential. The scheme is based on the creation of a dark state by designing the laser profile, so that the hottest atoms are coherently pumped to another internal level, and then repumped back. The scheme works beyond the Lamb-Dicke limit. We present results of a full quantum treatm...
متن کاملCavity sideband cooling of a single trapped ion.
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling betwe...
متن کاملTrapped antihydrogen in its ground state.
Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the num...
متن کاملTheory of cavity-assisted microwave cooling of polar molecules
We analyze cavity-assisted cooling schemes for polar molecules in the microwave domain, where molecules are excited on a rotational transition and energy is dissipated via strong interactions with a lossy stripline cavity, as recently proposed by A. André et al., Nature Physics 2, 636 (2006). We identify the dominant cooling and heating mechanisms in this setup and study cooling rates and final...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2011
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.83.053413